Simultaneous Interpolation and Deconvolution Model for the 3-D Reconstruction of Cell Images
نویسندگان
چکیده
Fluorescence microscopy methods are an important imaging technique in cell biology. Due to their depth sensitivity they allow a direct 3-D imaging. However, the resulting volume data sets are undersampled in depth, and the 2-D slices are blurred and noisy. Reconstructing the full 3-D information from these data is therefore a challenging task, and of high relevance for biological applications. We address this problem by combining deconvolution of the 3-D data set with interpolation of additional slices in an integrated variational approach. Our novel 3-D reconstruction model, Interpolating Robust and Regularised Richardson-Lucy reconstruction (IRRRL), merges the Robust and Regularised Richardson-Lucy deconvolution (RRRL) from [16] with variational interpolation. In this paper we develop the theoretical approach and its efficient numerical implementation using Fast Fourier Transform and a coarse-to-fine multiscale strategy. Experiments on confocal fluorescence microscopy data demonstrate the high restoration quality and computational efficiency of our approach.
منابع مشابه
ایجاد تصویر سه بعدی با استفاده از سیستم های فراصوت دو بعدی معمولی
Ultrasound imaging is one of the common methods in medical diagnostic systems. There are many artifacts in a two dimentional image. Three dimentional imaging can be used for better interpretation and perception of an image. Since 1969 many attemps have been made in this regards, and research continues all over the world. The main goal in...
متن کاملA Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images
Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...
متن کاملImpact of Various Image Reconstruction Methods on Joint Compensation of Respiratory Motion and Partial Volume Effects in Whole-Body 18F-FDG PET/CT Imaging: Patients with Non-Small Cell Lung Cancer
Background: The present study aims to assess the impact of various image reconstruction methods in 18F-FDG PET/CT imaging on the quantification performance of the proposed technique for joint compensation of respiratory motion and partial volume effects (PVEs) in patients with non-small cell lung cancer. Materials and Methods: An image-based deconvolution technique was proposed, incorporating w...
متن کاملCompensation of Cross-Contamination in Simultaneous 201Tl/99mTc Myocardial Perfusion SPECT Imaging
Introduction: It is a common protocol to use 201Tl for the rest and 99mTc for the stress cardiac SPECT imaging. Theoretically, both types of imaging may be performed simultaneously using different energy windows for each radionuclide. However, a potential limitation is the cross-contamination of scattered photons from 99mTc and collimator X-rays into the 201Tl energy window. We used a middle en...
متن کاملDeconvolution-interpolation gridding (DING): accurate reconstruction for arbitrary k-space trajectories.
A simple iterative algorithm, termed deconvolution-interpolation gridding (DING), is presented to address the problem of reconstructing images from arbitrarily-sampled k-space. The new algorithm solves a sparse system of linear equations that is equivalent to a deconvolution of the k-space with a small window. The deconvolution operation results in increased reconstruction accuracy without grid...
متن کامل